

DRALLDURCHLÄSSE MIT WIRBEL-LUFTAUSSTRÖMUNG VVDM

Diese technischen Bedingungen legen die Reihe der hergestellten Größen, Hauptabmessungen, Ausführungen und den Umfang der Anwendung der Dralldurchlässe VVDM fest (folgend nur Dralldurchlässe genannt). Sie sind verbindlich für die Auslegung, Bestellung, Lieferung, Lagerung, Montage, den Betrieb, die Wartung und Instandhaltung.

I. INHALT

II. ALLGEMEIN	2
1. Beschreibung	2
2. Ausführung	2
3. Frontplatten-Ausführungsvarianten der Luftleitelemente	4
4. Einstellung der Luftleitelemente	7
5. Abmessungen und Gewichte	7
6. Einbauvarianten	10
III. TECHNISCHE ANGABEN	11
7. Grundparameter	11
8. Berechnungs- und Bestimmungsgrößen	11
9. Lufttechnische Werte	12
IV. BESTELLANGABEN	23
10. Bestellschlüssel	23
V. MATERIAL	23
11. Material	23
VI. AUSSCHREIBUNGSTEXTE	23
12. Ausschreibungstexte	23

II. ALLGEMEIN

1. Beschreibung

Die handverstellbaren Dralldurchlässe VVDM mit Lamellen zur Anpassung der Strömungsrichtung sind lufttechnische Verteilungselemente, die eine optimale Anpassung der Luftströmung, je nach Bedarf der zu klimatisierenden oder zu belüftenden Räume, ermöglicht.

Variante A

Durch den drallförmigen Luftaustritt wird in hohem Maße Raumluft induziert und somit ein schneller Luftgeschwindigkeits- und Strahltemperaturabbau erreicht .

Variante B

Durch eine weitere Einstellung der Lamellen kann man eine Erhöhung der vertikalen Luftströmung erreichen . Durch einfache Verstellung der Lamellen vor Ort, kann eine komfortable Umgebung im Aufenthaltsraum geschaffen werden.

Dralldurchlässe sind für Raumhöhen von ca. 2,6 bis 4,0 m geeignet. Die Differenz zwischen Außenluftund Innenlufttemperatur kann bis 12 °C sein.

Die Dralldurchlässe sind für den Einsatz in milden Klimazonen gemäß EN 60721-3-3 Änderung A2 geeignet.

Dralldurchlässe sind für Luftmassen ohne abrasive, klebrige und chemische Beimischungen bestimmt.

2. Ausführung

Die Dralldurchlässe sind in folgenden Ausführungen lieferbar:

- kreisförmig mit einer quadratischen (VVDM C) oder runden (VVDM K) Frontplatte
- eckig mit einer quadratischen Frontplatte (VVDM M)

Die Frontplatten haben feste Nuten mit Regulierlamellen in Flügelform zur Einstellung der gewünschten Luftstromrichtung.

Die Frontplatten für Abluft werden ohne Lamellen und Gleichrichterelement ausgeführt.

Der Anschluss an die Luftleitung erfolgt horizontal oder vertikal über den Anschlusskasten mit rundem Anschlussstutzen. Auf Wunsch ist der Anschlusskasten mit oder ohne Drosselklappe ausgeführt.

Abb. 1 Frontplatten

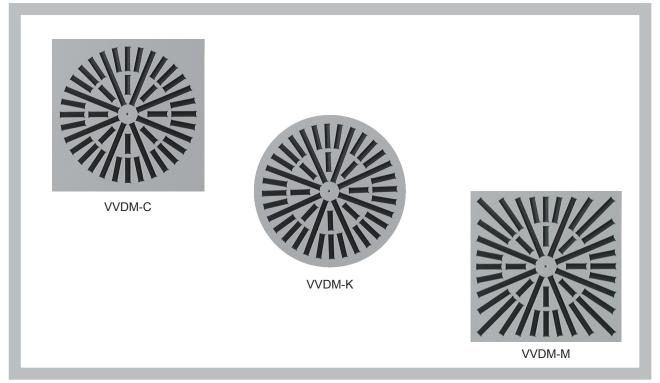


Abb. 2 VVDM C mit Anschlusskasten

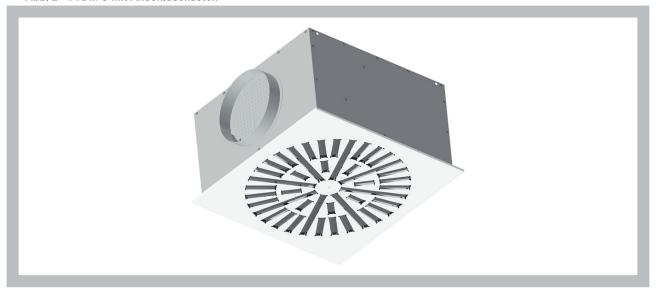
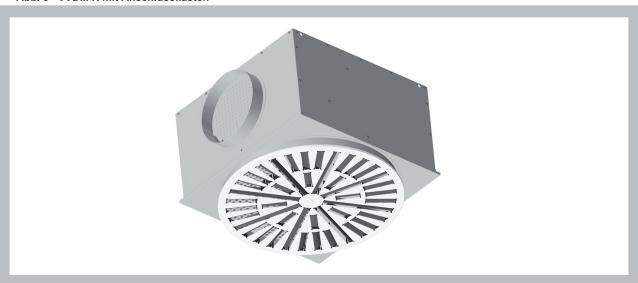
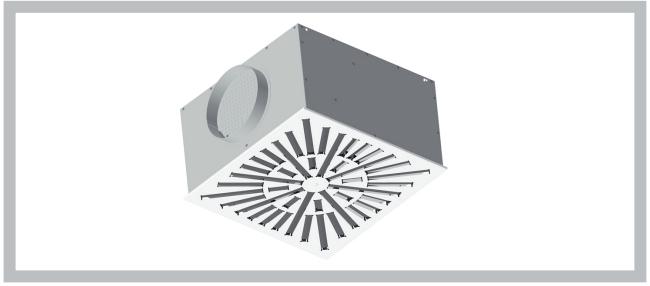
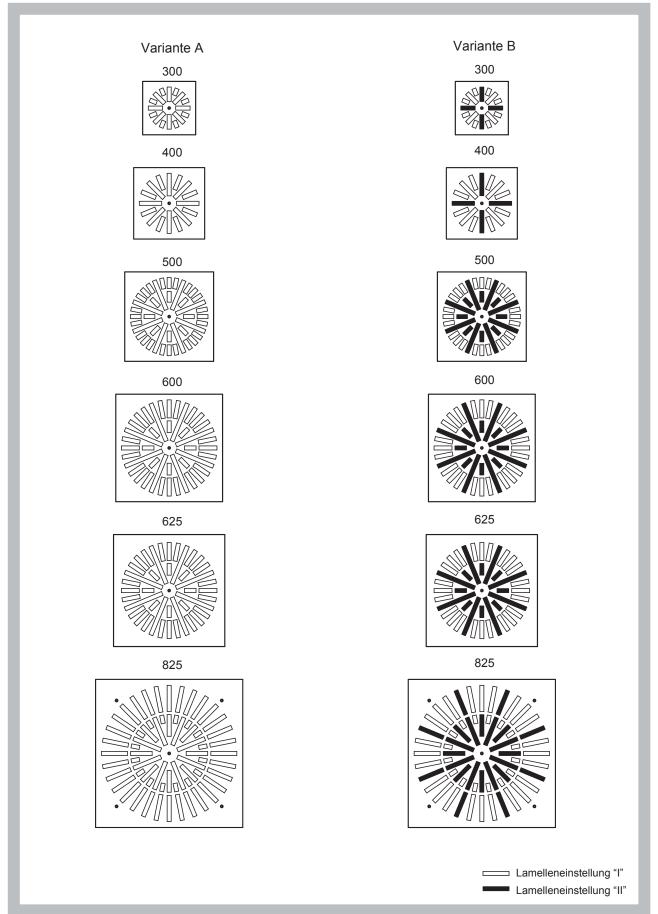


Abb. 3 VVDM K mit Anschlusskasten


Abb. 4 VVDM M mit Anschlusskasten

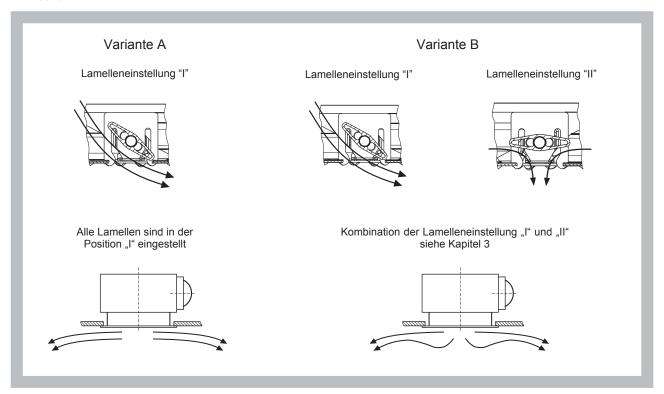
3. Frontplatten-Ausführungsvarianten - der Luftleitelemente

Abb. 5 VVDM C

Abb. 6 VVDM K

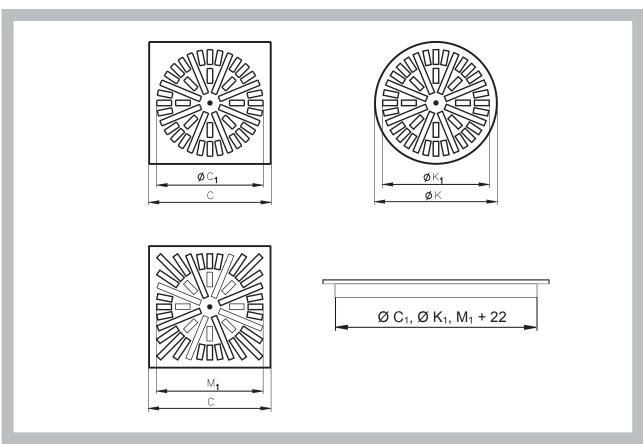
Variante A Variante B Lamelleneinstellung "I" Lamelleneinstellung "II"

Abb. 7 VVDM M


Variante A Variante B □ Lamelleneinstellung "I" Lamelleneinstellung "II"

4. Einstellung der Luftleitelemente

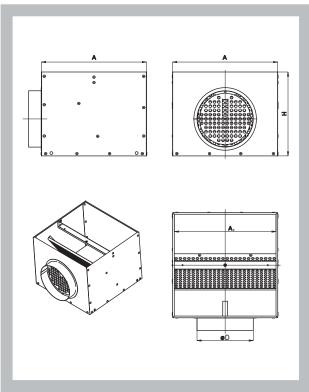
Einstellung der Luftleitelemente


Abb. 8

5. Abmessungen und Gewichte

Abmessungen der Frontplatte

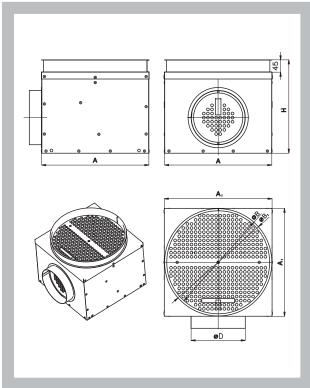
Abb. 9


Tab. 1 [mm]

Größe	С	øK	C ₁	ø K₁	M ₁
300	298	300	233	233	233
400	398	400	333	333	333
500	498	500	433	433	433
600	598	600	533	533	533
625	623	625	533	533	533
825	823	825	755	755	755

Abmessungen der Anschlusskästen

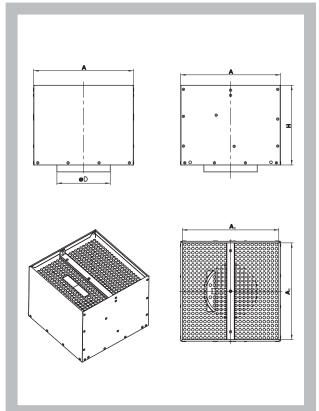
Horizontaler Anschluss


Abb. 10 Quadratische Frontplatte (VVDM C, VVDM

Tab. 2 Quadratische Frontplatte (VVDM C, VVDM M) [mm]

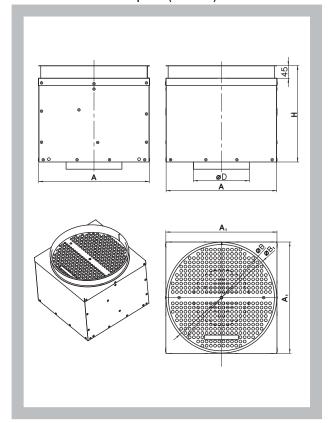
Größe	Α	A ₁	Н	ØD
300	270	258	255	158
400	370	358	295	198
500	470	458	295	198
600	572	560	345	248
625	572	560	345	248
825	812	788	395	313

Abb. 11 Runde Frontplatte (VVDM K)


Tab. 3 Runde Frontplatte (VVDM K) [mm]

Größe	Α	A ₁	Н	ØD	В	B ₁
300	270	297	300	158	275	287
400	370	390	340	198	365	385
500	470	490	340	198	465	485
600	572	592	390	248	570	590
625	572	592	390	248	570	590
825	812	832	440	313	790	810

Vertikaler Anschluss


Abb. 12 Quadratische Frontplatte (VVDM C, VVDM M)

Tab. 4 Quadratische Frontplatte (VVDM C, VVDM M) [mm]

Größe	Α	A ₁	Н	ØD
300	270	258	255	158
400	370	358	295	198
500	470	458	295	198
600	572	560	345	248
625	572	560	345	248
825	812	788	395	313

Abb. 13 Runde Frontplatte (VVDM K)

Tab. 5 Runde Frontplatte (VVDM K) [mm]

Größe	Α	A ₁	н	ØD	В	B ₁
300	270	297	300	158	275	287
400	370	390	340	198	365	385
500	470	490	340	198	465	485
600	572	592	390	248	570	590
625	572	592	390	248	570	590
825	812	832	440	313	790	810

Gewichte

Tab. 6 [kg]

	ı			_					
	Quadratische Frontplatten								atten
Größe	Front- platte	Front- platte		Horizontaler Vertikaler Anschluss Anschluss		Front- platte	Hor. Anschluss	Vert. Anschluss	
	VVDM C	VVDM M	VVDM C	VVDM M	VVDM C	VVDM M	VVDM K	VVDM K	VVDM K
300	0,9	1,0	3,1	3,2	3,2	3,3	0,6	3,4	3,4
400	1,5	1,6	5,0	5,1	5,1	5,2	1,0	5,3	5,3
500	2,3	2,4	6,9	7,0	7,1	7,2	1,5	7,2	7,2
600	3,1	3,2	9,5	9,6	9,9	10,0	2,0	9,9	9,9
625	3,3	3,4	9,7	9,8	10,1	10,2	2,2	10,1	10,1
825	5,8	6,0	17,1	17,3	18,3	18,5	4,0	17,3	17,3

6. Einbauvarianten

Alle Größen sind sowohl zum deckenbündigen Einbau als auch freihängend geeignet. Die Anschlusskästen sind mit Aufhängelaschen versehen. Nachstehend sind einige Einbaubeispiele.

Abb. 14 Einbau

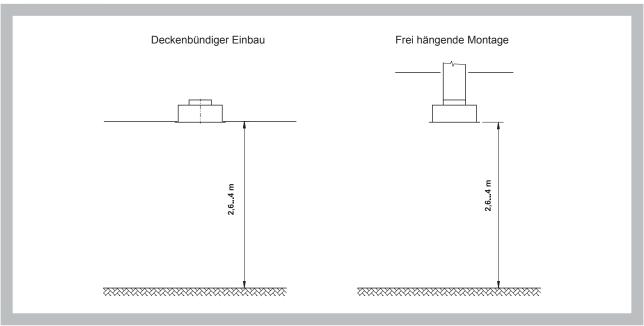
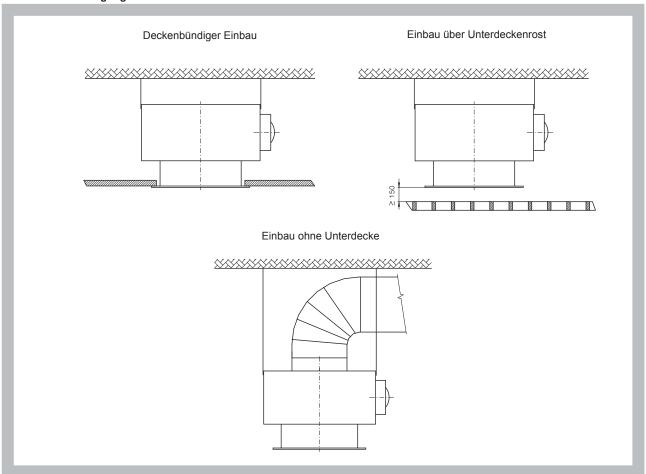



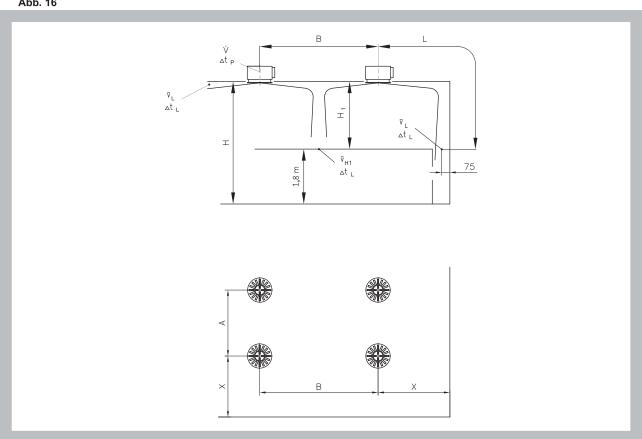
Abb. 15 Befestigungsart

III. TECHNISCHE ANGABEN

7. Grundparameter

Grundparameter

Tab. 7 VVDM C, VVDM K

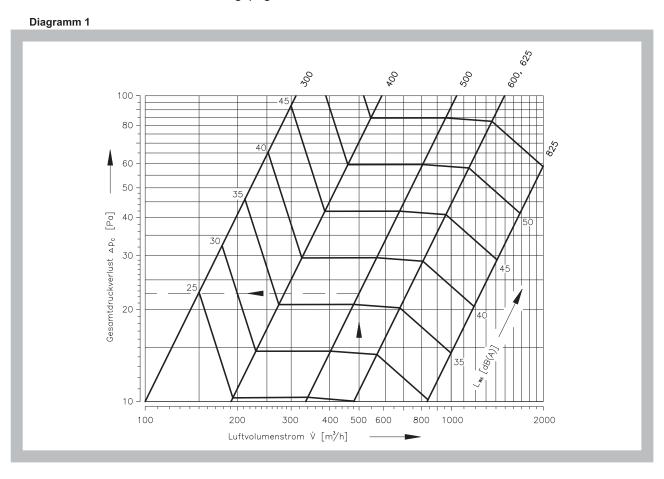

Größe	300	400	500	600, 625	825
ν _{max} [m³/h]	260	350	600	850	1250
Ů _{min} [m³/h]	70	130	250	360	600
L _{WAmax} [dB(A)]	40	42	43	43	42
L _{WAmin} [dB(A)]	<15	<15	<15	<15	<15
S _{ef} [m ²]	0,009854	0,017799	0,03503	0,05085	0,082535

Tab. 8 VVDM M

_	1				
Größe	300	400	500	600, 625	825
√ _{max} [m³/h]	300	370	700	1000	1500
v _{min} [m³/h]	85	150	310	440	710
L _{WAmax} [dB(A)]	42	43	41	43	43
L _{WAmin} [dB(A)]	<20	<20	<20	<20	<20
S _{ef} [m ²]	0,011978	0,02179	0,04303	0,061336	0,09831

8. Berechnungs- und Bestimmungsgrößen

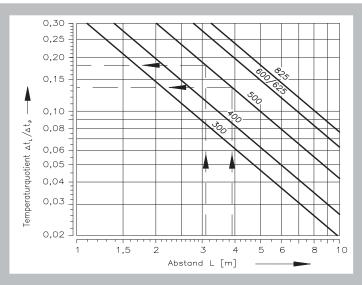
Abb. 16



ν̈́ A, B L X	[m³/h] [m] [m] [m]	Luftvolumenstrom für einen Dralldurchlass Abstand zwischen zwei Dralldurchlässen horizontaler und vertikaler Abstand (X + H ₁) Abstand der Dralldurchlassmitte von der Wand
H H ₁	[m] [m]	Deckenhöhe - ab 2,6 bis 4,0 m Abstand zwischen Decke und Aufenthaltszone
VL	[m.s ¹]	mittlere Strömungsgeschwindigkeit an der Wand
V _{H1}	[m.s ¹]	mittlere Strömungsgeschwindigkeit zwischen zwei Dralldurchlässen im Abstand H_1
Wef	[m.s ¹]	effektive Ausblasgeschwindigkeit
Δt_p	[K]	Temperaturdifferenz zwischen Zuluft- und Raumlufttemperatur
Δt_L	[K]	Temperaturdifferenz zwischen Strömungs- und Raumlufttemperatur im Abstand L = $A/2 + H_1$ bzw. L = $B/2 + H_1$ bzw. L = $X + H_1$
Δp_c	[Pa]	Gesamtdruckverlust bei ρ = 1,2 kg/m³
L_{WA}	[dB(A)]	Schallleistungspegel
S_{ef}	[m²]	effektive Austrittsfläche

9. Lufttechnische Werte

Druckverluste und Schallleistungspegel für VVDM C, VVDM K - Variante A und B



Tab. 9
Korrekturfaktor der Druckverluste und der Schallleistung je nach Winkel der Klappenstellung VVDM C, VVDM K

Größe		Einstellwinkel der Klappe					
Große		0°	45°	90°			
300 ^Δ	pc	x1,0	x1,4	x2,1			
300	L _{WA}	-	-	+1			
400 ^Δ	p _c	x1,0	x1,2	x1,8			
400	L _{WA}	-	+1,0	20			
500 ^Δ	p _c	x1,0	x2,0	x4,5			
500	Lwa	-	+3,0	+8,0			
Δ 600 625	pc	x1,0	x1,5	x3,6			
600, 625	L _{WA}	-	+4,0	+9,0			
825 ^Δ	рс	x1,0	x1,4	x3,4			
025	L _{WA}	-	+1	+3			

Temperaturkoeffizient für VVDM C, VVDM K - Variante A

Diagramm 2 Temperaturquotient für VVDM C, VVDM K - Variante A

Strömungsgeschwindigkeit VVDM C, VVDM K - Variante A

Diagramm 3 Strömungsgeschwindigkeit VVDM C, VVDM K 300 - Variante A

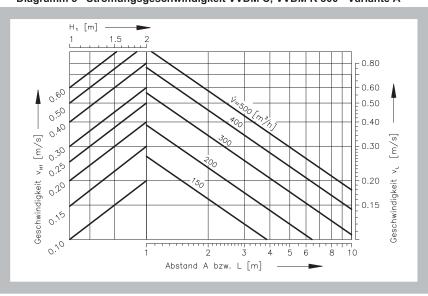


Diagramm 4 Strömungsgeschwindigkeit VVDM C, VVDM K 400 - Variante A

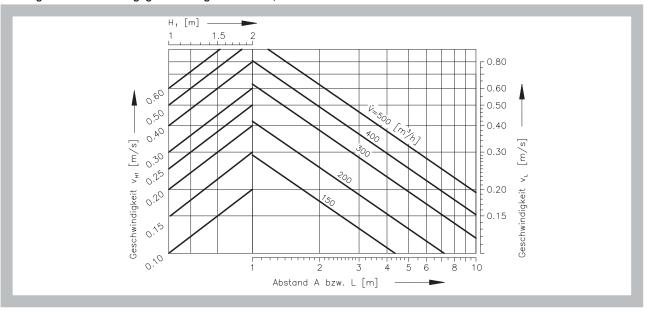


Diagramm 5 Strömungsgeschwindigkeit VVDM C, VVDM K 500 - Variante A

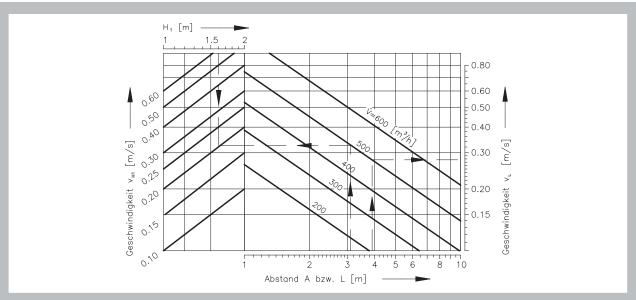


Diagramm 6 Strömungsgeschwindigkeit VVDM C, VVDM K 600, 625 - Variante A

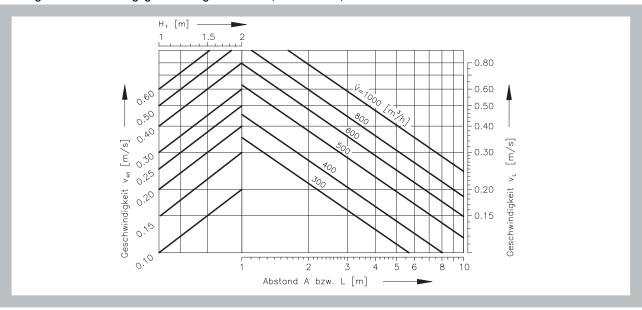
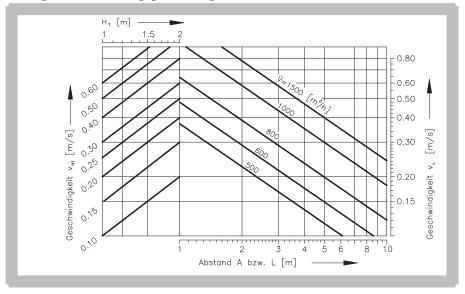





Diagramm 7 Strömungsgeschwindigkeit VVDM C, VVDM K 825 - Variante A

Temperaturkoeffizient für VVDM C, VVDM K - Variante B

Diagramm 8

Strömungsgeschwindigkeit VVDM C, VVDM K - Variante B

Diagramm 9 VVDM C, VVDM K 300 - Variante B

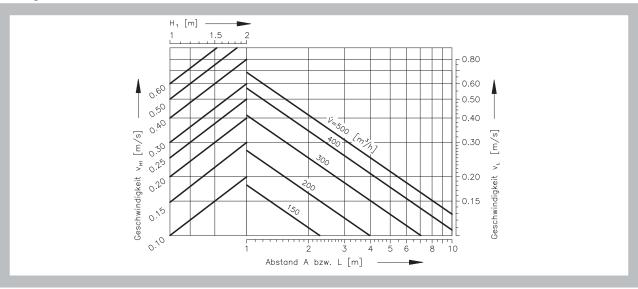


Diagramm 10 Strömungsgeschwindigkeit VVDM C, VVDM K 400 - Variante B

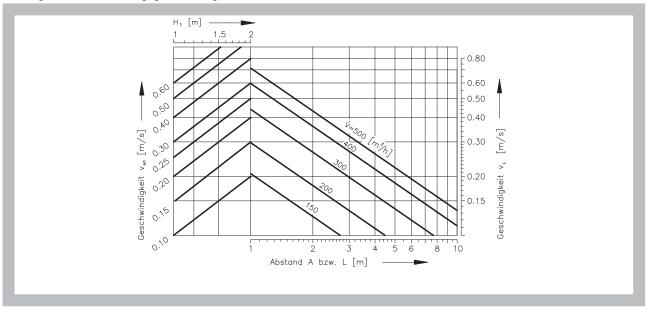


Diagramm 11 Strömungsgeschwindigkeit VVDM C, VVDM K 500 - Variante B

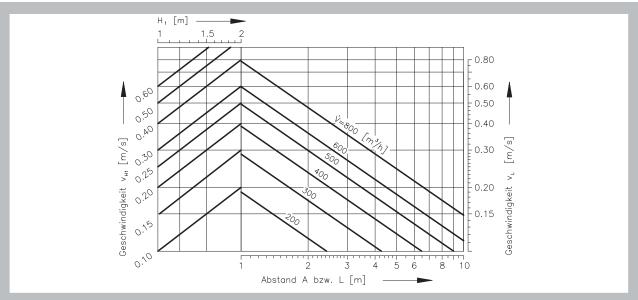
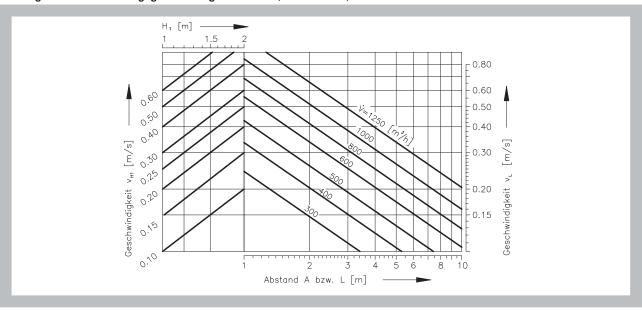
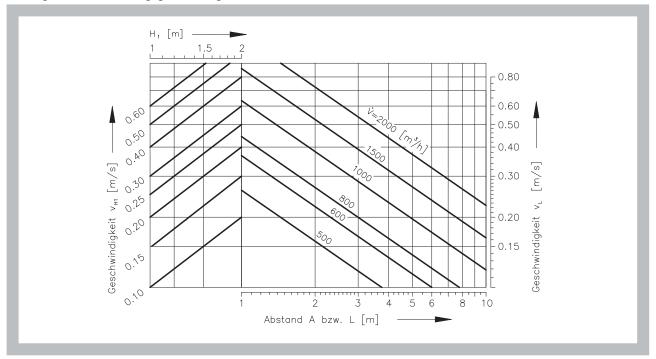


Diagramm 12 Strömungsgeschwindigkeit VVDM C, VVDM K 600, 625 - Variante B

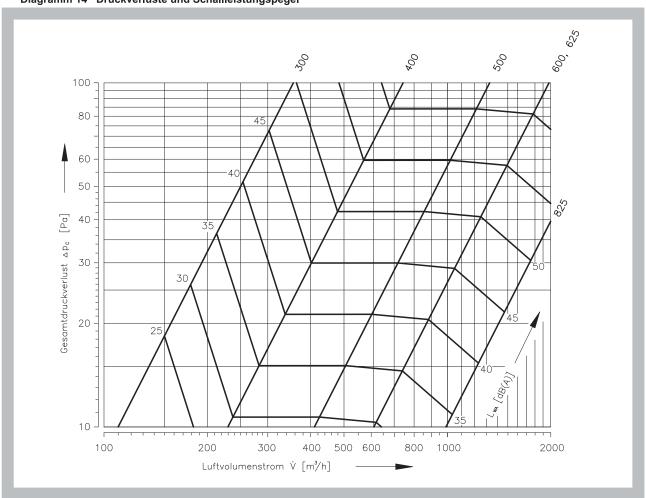
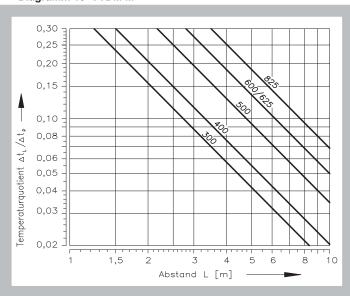


Diagramm 13 Strömungsgeschwindigkeit VVDM C, VVDM K 825 - Variante B

Druckverluste und Schallleistungspegel VVDM M - Variante A und B

Diagramm 14 Druckverluste und Schallleistungspegel



Tab. 10 Korrekturfaktor der Druckverluste und der Schallleistung je nach Winkel der Klappenstellung VVDM M

Größe		Einstellwinkel der Klappe					
Große		0°	45°	90°			
300 ^Δ	pc	x1,0	x1,5	x2,4			
300	L _{WA}	-	-	+1			
400 ^Δ	p _c	x1,0	x1,3	x2			
400	L _{WA}	-	+1,0	20			
500 ^Δ	p _c	x1,0	x2,1	x4,6			
500	L _{WA}	-	+3,0	80			
COO. COΣ	p _c	x1,0	x1,5	x4,0			
600, 625	L _{WA}	-	+4,0	+9,0			
ο25	p _c	x1,0	x1,4	x3,5			
825	L _{WA}	-	+1	+3			

Temperaturkoeffizient für VVDM M - Variante A

Diagramm 15 VVDM M

Strömungsgeschwindigkeit VVDM M - Variante A

Diagramm 16 VVDM M 300 - Variante A

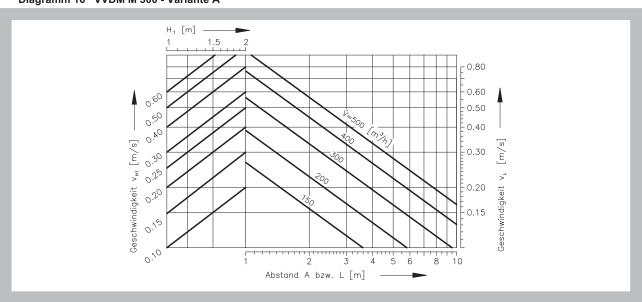


Diagramm 17 Strömungsgeschwindigkeit VVDM M 400 - Variante A

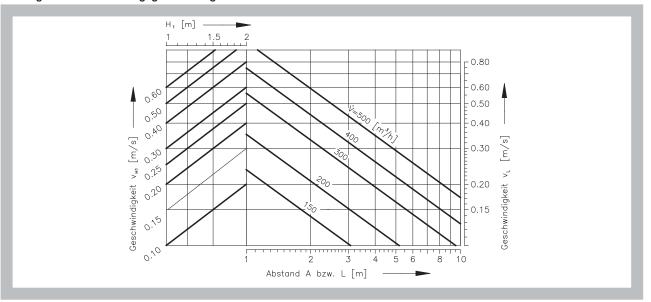


Diagramm 18 Strömungsgeschwindigkeit VVDM M 500 - Variante A

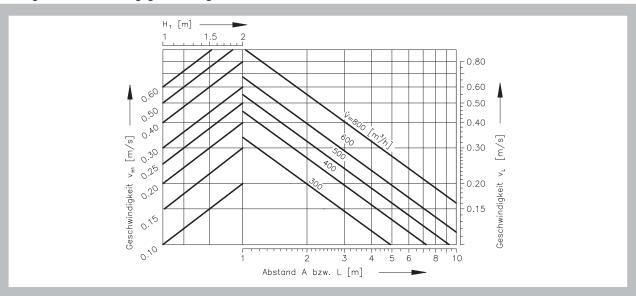


Diagramm 19 Strömungsgeschwindigkeit VVDM M 600,625 - Variante A

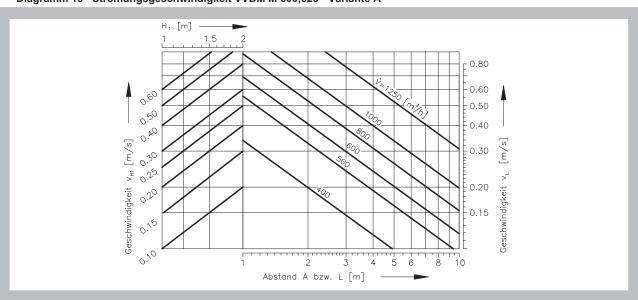
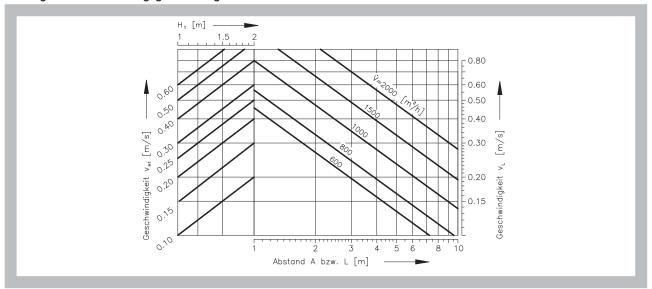
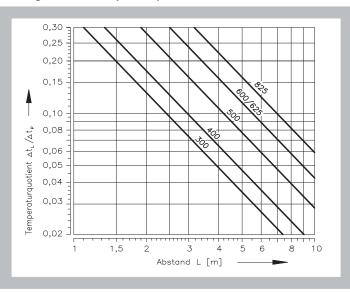




Diagramm 20 Strömungsgeschwindigkeit VVDM M 825 - Variante A

Temperaturquotient für VVDM M - Variante B

Diagramm 21 Temperaturquotient für VVDM M - Variante B

Strömungsgeschwindigkeit VVDM M - Variante B

Diagramm 22 VVDM M 300 - Variante B

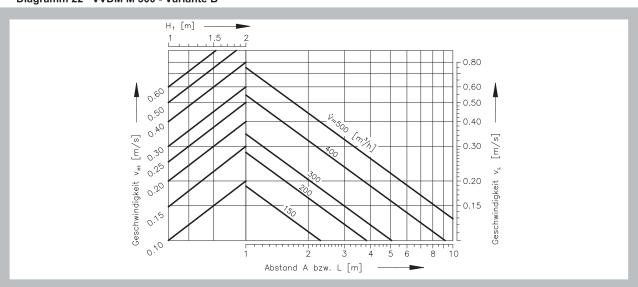


Diagramm 23 Strömungsgeschwindigkeit VVDM M 400 - Variante B

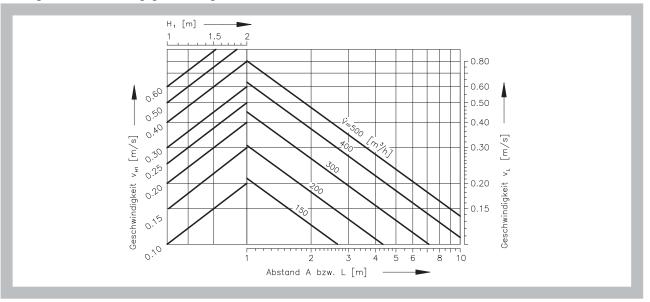


Diagramm 24 Strömungsgeschwindigkeit VVDM M 500 - Variante B

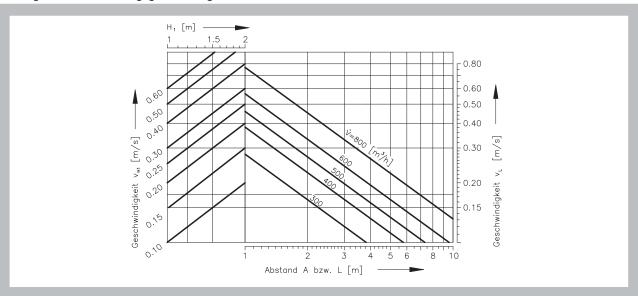


Diagramm 25 Strömungsgeschwindigkeit VVDM M 600,625 - Variante B

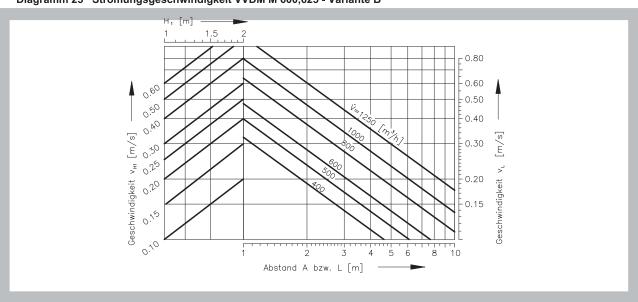


Diagramm 26 Strömungsgeschwindigkeit VVDM M 825 - Variante B

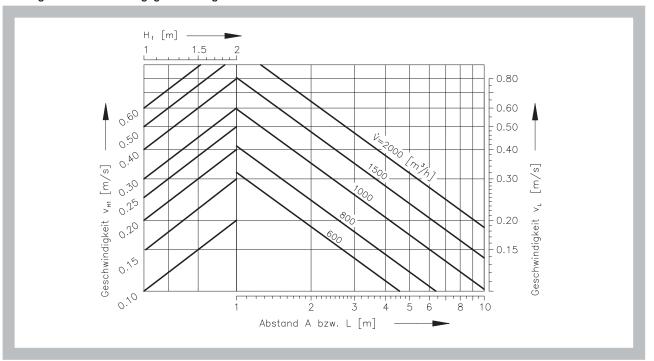


Abb. 17 Beispiel

Eingegebene Daten:	Dralldurchlass VVDM - C 500 Variante A
--------------------	--

$$\dot{V} = 500 \text{ m}^3/\text{h}$$

$$\Delta t_p$$
 = -8 K

$$H_1 = 1,6 \text{ m}$$

$$A = 3 \text{ m}, B = 3 \text{ m}$$

$$X = 2.3 \text{ m}$$

Diagramm 1 : $L_{WA} = 36 \text{ dB}(A)$

$$\Delta p_c = 23 Pa$$

Diagramm 2 : $L = A/2 + H_1 = 3,1 \text{ m}$ Zwischen Luftauslässen

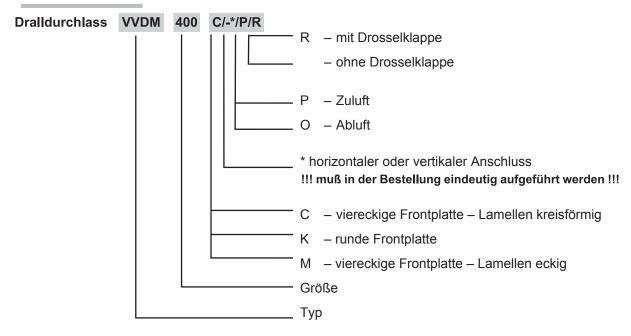
$$\Delta t_L / \Delta t_p = 0.18$$

$$\Delta t_L = -8 * 0.18 = -1.44 \text{ K}$$

$$L = X + H_1 = 3.9 \text{ m}$$
 An der Wand

$$\Delta t_L / \Delta t_p = 0.135$$

$$\Delta t_L = -8 * 0,135 = -1,08 \text{ K}$$


Diagramm 5 : $v_{H1} = 0.2 \text{ m/s}$ Zwischen Luftauslässen

$$v_L = 0.28 \text{ m/s}$$
 An der Wand

IV. BESTELLUNGSANGABEN

10. Bestellschlüssel

V. MATERIAL

11. Material

• Lamellendurchlass Stahlblech (1 mm)

Oberfläche Pulverbeschichtung Standard RAL 9010

Anschlusskasten Stahlblech verzinkt

VI. AUSSCHREIBUNGSTEXTE

12. Ausschreibungstexte

Dralldurchlass für Zuluft/Abluft, für drallförmige Luftführung.

Geeignet für Raumhöhen von ca. 2,6 bis 4,0 m.

Wahlweise mit Anschlußkasten und Drosselklappe lieferbar.

Frontplatte:

- Vorbehandelt und pulverbeschichtet RAL 9010 (Standardoberfläche)
- Wahlweise andere Farbtöne möglich
- Mit festen Nuten
- Montage/ demontage durch Mittelschraube
- Wahlweise quadratisch mit kreisförmig oder eckig angeordneten Lamellen
 - rund mit kreisförmig angeordneten Lamellen

Regulierlamellen:

- Einzeln verstellbar in Flügelform zur Einstellung der gewünschten Luftstromrichtung
- Aus Kunststoff in schwarzer Farbe auf Wunsch auch in weiß erhältlich

MANDÍK, a.s.

Dobříšská 550

26724 Hostomice
Tschechische Republik

MANDÍK GmbH
Veit-Stoß-Straße 12
92637 Weiden
Deutschland

Tel.: +420 311 706 742 Tel.: +49(0) 961-6702030

E-Mail: mandik@mandik.cz E-Mail: info@mandik.com

www.mandik.de

Der Hersteller behält sich das Recht vor, weitere Änderungen an Produkten und Zusatzgeräten vorzunehmen. Aktuelle Informationen stehen unter www.mandik.de zur Verfügung.